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Agent Learning in the Multi-Agent Contracting officer's technical 

representative System (MACS) 

 

Abstract.  This paper presents a Bayesian learning approach for a Web-based multiagent 

system.  Of particular interest is the application area for which the system was built — 

defense contracting.  In U.S. defense research contracting, scientists expend significant 

effort to complete administrative details for contract acquisition, and often rely on the 

Defense Acquisition Deskbook for assistance.  However, the current system requires human 

experts to respond to queries by scientists.  Preliminary work on automating the process has 

been completed.  The research presented in this paper builds on the past, preliminary, work 

by developing a multiagent system, termed Multi-Agent Contracting officer's technical 

representative System (MACS).  MACS is an intelligent multiagent system with the ability 

to learn from and adapt to its environment via Bayesian learning.  Efficacy of MACS has 

been determined by analyzing the accuracy and degree of learning in the system.  This was 

accomplished by testing the system against historical data. 

 

1. Introduction 
 

Intelligent agents are entities that possess some degree of autonomy and can act on 

behalf of a user [2].  They can be characterized by three attributes: agency, mobility, and 

intelligence [10].  Agency is the degree of autonomy an agent possesses.  It is measured by 

the ability of an agent to act on behalf of a user.  Mobility measures an agent's ability to 

move through a distributed network.  Intelligence measures an agent's ability to reason and 
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learn.  It refers to the level of reasoning and learned behavior exhibited by an agent.  

Intelligence can be as simple as stating preferences or as complex as learning from and 

adapting to the external environment [3]. This paper posits that higher levels of intelligence 

exist when agents can adapt to their environment [7].  Such adaptation involves learning 

about the user's objectives and resources available to the agent in its environment. 

Learning can also be thought of as belief revision [1] [8] [18].  This is the actual 

mechanism by which adaptation, and thus learning, occurs.  For example, if agent A 

believes that agent B can provide information on contract justification, but in fact agent B 

cannot, then agent A must revise this belief so that next time it looks for information on 

contract information it will know not to query agent B. 

 Emphasis on the intelligence attribute of agents is important because the intelligence, 

and learning capability, of an agent influences its performance. Gaines [9] and Pendharkar 

[24]  allude to this notion of linking learning and performance.  Systems built upon a 

knowledge base, as are agent systems, tend to degrade significantly as the limits of 

knowledge are reached [21].  That is, intelligent agent performance can be sensitive to initial 

knowledge distribution among agents in a multi-agent system [17]. Holland [14] and Smith 

[29] term this brittleness, and it is highly relevant for intelligent agent systems where agents 

are assumed to be somewhat autonomous as a result of the knowledge they possess.  Since it 

is not realistic to encode complete knowledge into the intelligent agent system a priori, 

systems must be able to adapt to changing environmental conditions and apply knowledge 

gained from previous experiences to maintain, and even improve, performance levels [9] 

[21] [24].  Thus, systems must be able to learn. 
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Traditional machine learning has developed a wide variety of algorithms for 

providing single-agent systems with learning capacity [19]. Among the main classes of 

algorithms for traditional machine learning are induction of trees and rules, learning in 

neural nets, system classifiers and genetic algorithms, reinforcement learning, Bayesian 

learning, case-based learning, logic-based learning, and some others. However, these 

algorithms do not apply directly when used in MAS.  Learning in multiagent systems 

(MAS) opens new challenges and opportunities for researchers. 

Agent work on learning has been conducted by such researchers as Ayala and Yano 

[1], who use agents in the area of computer supported collaborative learning, Vaario and 

Ueda [30] look at modular learning in multi-agent environments, and Norrie and Gaines 

[20] who conceptualize learning on the Web through agents.  There are also several 

researchers who have looked specifically at Bayesian learning in MAS.   

The objective of this paper is to present a Bayesian learning approach for a Web-

based MAS.  The application area employed to illustrate agent learning is defense research 

contracting.  In U.S. defense research contracting, scientists expend significant effort to 

complete administrative details for contract acquisition, and often rely on the Defense 

Acquisition Deskbook for assistance.  However, the current system requires human experts 

to respond to queries by scientists.  Preliminary work on automating the process has been 

completed by Liebowitz et al. [16], who built a multiagent system to respond to scientist 

queries.  This work builds on past work by extending the system to a multiagent system that 

can learn from and adapt to its environment via Bayesian learning.  The system, termed 

Multi-Agent Contracting officer's technical representative System (MACS), can be accessed 

at http://kmlab-01.ifsm.umbc.edu/macs/. 

http://kmlab-01.ifsm.umbc.edu/macs/
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Several learning techniques were explored for possible integration with MACS, and 

Bayesian learning proved to be the most appropriate.  A primary distinction from past work 

on Bayesian learning in MAS is that a negotiation problem is not used to illustrate learning.  

Instead, we use a cooperative system that does not involve negotiation between agents, 

MACS, to illustrate our research findings.  Efficacy of MACS is determined by analyzing 

the accuracy of learning in the system.  

The next section describes the MACS system.  Then Section 3 provides an overview 

of Bayesian learning and how it is implemented in MACS.  Section 4 analyzes the 

effectiveness of Bayesian learning in MACS, and Section 5 draws conclusions from the 

analysis and suggests future research directions.  

 
 
 
2. MACS 
 
2.1 Description of MACS 
 

The MACS system is a MAS developed for procurement and acquisition of defense 

contracts.  Specifically, it is designed to assist Acquisition Request Originators (AROs) and 

Contracting Officer's Technical Representatives (COTRs) with the pre-award phase of 

contracting and procurement [16].  The system architecture consists of nine  agents — a 

User agent, a Facilitator agent, a Natural Language agent, a Machine Learning agent, and 

five specialty agents.  The specialty agents are encoded with domain knowledge about the 

five general areas of expertise required of AROs/COTRs, and the user agent interfaces with 

AROs/COTRs.  Interaction between AROs/COTRs and the system occurs through either 

keyword searches or natural language queries.  As shown in Figure 1, the MACS 
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architecture implements a typical three-tiered brokered architecture.  The Facilitator agent 

coordinates agent activities and communicates with the agent(s) capable of responding to an 

incoming query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Agent architecture and communication channels 
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the User agent.  One thread supports the Natural Language capability of the system, and the 

other supports the keyword search capability of the system.  The User agent sends incoming 

user queries to the Facilitator agent, which is responsible for communicating with all of the 

other agents in the MACS system as illustrated in Figure 1.  

Queries submitted by users are forwarded, by the Facilitator agent, to the Machine 

Learning (ML) agent, the ML agent implements Bayesian learning and creates an action 

plan, and that plan is then issued back to the Facilitator agent for completion.  In MACS, the 

action plan is essentially a determination of which specialty agent(s) should be contacted to 

respond to an incoming query.  The facilitator completes the action plan by performing the 

necessary low-level communication between the specialty agents.  These communications 

lead to solutions being sent from a specialty agent (or agents) to the Facilitator agent and 

then from there to the User agent.  As solutions to a query are collected, the ML agent 

updates its internal tables, making note of which agents responded to which user queries.  

This information is used to calculate the response plan for similar queries in the future.   

The five specialty agents in the system relate to the pre-award phase of a contract and 

include the Forms, Justification, Evaluation, Synopsis, and Type of Contract agents.  The 

Forms agent identifies the forms needed to complete a procurement request package.  The 

Justification agent indicates situations where a justification and approval is required to 

complete a procurement request.  The Evaluation agent provides guidelines for evaluating 

proposals.  The Synopsis agent identifies the type of synopsis for a given procurement 

request.  Lastly, the Type of Contracts agent identifies the type and nature of a contract 

based on conditions such as the source of contract, the nature of the work, etc.  
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Each agent in MACS contains a rule base and has explicit goals.  Its rule-base 

describes how to achieve the goals under varying circumstances. The specialty agents 

respond to incoming queries by presenting necessary information and/or requirements for 

AROs/COTRs.  For example, the Evaluation Agent can assist an ARO/COTR with 

information regarding how to evaluate a project and what criteria or weights to use for 

evaluation of a contract.  If an ARO/COTR has a question regarding "determining weights 

on evaluation criteria," the Evaluation agent will reply with "You can develop your own 

weights on technical, qualifications, and cost criteria.  Generally speaking, a weight of 40 

percent (out of 100%) is given to cost." [16]. 

The knowledge contained within each specialty agent is independent of the 

knowledge contained within the other specialty agents.  Thus, coordination between the 

specialty agents is not required for the current implementation.  However, each specialty 

agent does coordinate with the user agent in order to answer queries.  In the original system 

[16], the user agent broadcast messages to all specialty agents.  The learning capability that 

is now part of MACS allows the user agent to learn which specialty agent(s) should receive 

incoming messages.  The user agent asks the ML agent to determine which specialty 

agent(s) should receive the query.  The ML agent makes this determination probabilistically, 

by means of Bayesian learning.  This is explained more fully in Section 3.  

 

2.2 Technical Details of MACS 

 MACS has been implemented using the Open Agent Architecture (OAA), which is 

supported by the Artificial Intelligence Lab at the Stanford Research Institute.  There are 
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many facets of the OAA that are worthy of discussion.  However, only those capabilities 

relevant for the MACS system are mentioned here.     

The Facilitator agent functions as part of MACS, but it is a specialized server agent 

that is part of OAA, and it performs many basic functions.  The Facilitator agent has the 

ability to route messages, manage data, and fire registered triggers as well as accept 

incoming messages.  The Facilitator agent delegates incoming messages to the appropriate 

specialty agent, and specialty agent responses are then relayed back to the requesting agent 

(the User Agent in the case of MACS).   

A process called unification evaluates incoming messages.  Unification is a powerful 

mechanism for determining where the incoming query should be forwarded.  For instance, 

the contracts agent publishes strings such as “contract(Query,Flag,Result)” where the 

arguments that start with an uppercase letter indicate variables.  If a request is received in 

the form “contracts(‘$25,000’,’sole source’,X)” it will be routed to the contracts agent.  The 

implementation of the MACS system in OAA allows for message brokering.  That is, the 

facilitator automatically routes incoming queries to specific specialty agents based on the 

"solvables" each specialty agent registers with the facilitator.  

 Furthermore, the rules for MACS have been encoded as XML documents.  The XML 

encoding of the rules offers a flexible means for rule modification that was not possible in 

the earlier version of MACS [16].  Each specialty agent loads the XML document as its 

rulebase.  The rulebase is used to compare against incoming queries to determine if a rule is 

true or false.  The XML rulebases are simply ASCII documents that are served up by a web 

server.  A series of web forms have been designed for modification of the rulebases and 

general system maintenance. 
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3. Learning in multiagent systems 
 
3.1. Overview   
 

Learning in MAS can be classified into two main categories: centralized learning 

and decentralized learning.  Centralized learning, also called isolated learning, is performed 

by a single agent and does not require any interaction with other agents.  Decentralized 

learning, also called interactive learning, is performed through the interaction of several 

agents who work to achieve the learning goal(s).  Issues that must be addressed in MAS 

learning include the degree of centralization; the level, persistence, frequency and pattern of 

interaction; the learning method (rote, instruction, examples, analogy, discovery); and the 

learning feedback (supervised, reinforcement, unsupervised). 

The Credit-Assignment Problem (CAP) is the basic problem any learning algorithm 

is confronted with.  The CAP consists of properly assigning credit or blame, for an overall 

performance change to each of the system activities that contributed to the change.  For 

MAS learning, the CAP problem becomes more challenging because several agents should 

be considered instead of just one agent, as has been the case in traditional machine learning.  

The CAP for MAS is decomposed into two subproblems: 

 
a) The inter-agent CAP. The feedback into the system should be distributed among the 

various agents. This consists of assigning credit or blame to each of the specific agents 
for an overall performance change. 

 
b) The intra-agent CAP. The feedback for a single agent should be distributed among its 

internal inferences and decisions. This consists of assigning credit or blame to each 
internal operation of the agent, which typically are inferences and decisions. 
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The difference between inter-agent CAP and intra-agent CAP is a conceptual 

distinction. In practice, it is not always easy to separate the two problems. These two 

problems are difficult ones for any MAS or traditional learning algorithm.  

There are several aspects of learning to be considered for MAS [28].  The first refers 

to how agents can learn to coordinate their activities by cooperating with other agents in 

order to achieve overall or individual goals.  The second aspect regards how an agent can 

learn to improve its individual performance.  It may happen that an agent’s improvement is 

attained at the expense of other agents.  Lastly, the relationship between learning and 

communication must be assessed. 

Agents must be able to learn to coordinate their activities in order to optimize 

resources or maximize their own profit.  Frequently, agents are designed off-line and then 

put to work without being able to adapt to the environment, to new opportunities, or to the 

goals of other agents.  Then, in order to be effective, agents need to learn about other agents 

and adapt to a dynamic environment [28].  There are two approaches to this problem.  In the 

first approach, an agent is not aware of the existence of other agents, it acts as if it were the 

only agent in the system.  In the second approach, each agent is aware of the existence of 

the other agents.  In both cases, reinforcement learning is the main technique employed to 

achieve agent improvement.  

Agents improve their own performance by learning about other agents in order to 

take advantage of opportunities.  The objective is to predict the behavior of other agents in 

order to improve and refine the behavior of the agent. This can be achieved via learning 

organizational roles, learning to benefit from market conditions, and learning to play better 

against an opponent. 
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There are two main research threads for learning and communication:  learning to 

communicate, and communication as learning.  In learning to communicate, the idea is to 

reduce the load of communication among individual agents. It is believed that 

communication is very slow and expensive; therefore, it should be avoided or at least 

reduced whenever possible. Enabling the individual agents to acquire and refine knowledge 

of the other agents´ task solving abilities can reduce communication. T. Ohko and 

colleagues have used case-based reasoning as a learning technique to avoid the need for 

broadcasting messages when promoting agents bids [22].  In communication as learning, 

communication is viewed as a method for exchanging information that allows agents to 

refine their learning activities.  Agents that have a limited access to relevant information run 

the risk of failing in solving a given learning task.  Enabling the agents to explicitly 

exchange information may reduce this risk.   Both perspectives on learning and 

communication address issues of what to communicate, when to communicate, with whom 

to communicate, and how to communicate. 

 

3.2. Bayesian Learning 
 
3.2.1. Background 

 

Bayesian probabilistic inference has been widely used to represent and reason with 

uncertain knowledge in intelligent systems [23].  Bayesian inference uses a Bayesian 

network representation to make inferences about how likely it is that a hypothesis will be 

true given certain evidence.  The nodes of the network represent random variables and the 

arcs represent dependencies among variables, and the dependencies may represent causal 
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relationships, where the arrows point from the causes to the effects.  Bayesian inference is 

commonly applied for such things as diagnostic, classification, and prediction tasks, 

information retrieval and user profiling.  

Bayesian networks and inference have been used as knowledge representation and 

automated reasoning techniques, respectively, for uncertain domains.  In one approach to 

Bayesian modeling, human experts are responsible for designing the network structure by 

identifying the variables and finding the dependencies among the variables, and also, they 

are responsible for judging and calculating the conditional probabilities associated with 

each node.  In recent years, attempts have been made to automate both the design of the 

network structure, as well as the calculation of the conditional probabilities [5] [6] [12].  

This automation process is known as Bayesian learning.  In this case, probabilities are not 

known a priori.  Rather, in Bayesian learning, networks (their structure and their 

conditional probabilities) are learned (or updated) automatically in order to facilitate the 

design and use of Bayesian networks in various tasks. 

 

3.2.2. Multiagent systems  

Essentially, Bayesian learning in MAS allows agents to use new or updated 

knowledge about other agents in the system to enhance performance of the system as a 

whole.  Recent work on multiagent learning has been conducted by such researchers as Sen 

and Sekaran [27], Zeng and Sycara [32] [31], Goldman and Rosenchein [11], Bui et al. [4], 

and Prasad, Lesser, and Lander [25].  Much of this research has been for learning in 

autonomous negotiations and learning organizational roles (i.e., group dynamics).  Our work 

differs by looking at a problem that does not involve negotiation.  Rather than learning 
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preferences of other agents, the MACS system learns abilities of other agents in order to 

enhance performance and efficiency of the system.  Furthermore, the MACS system applies 

agent learning to the domain of defense contracting.   

Zeng and Sycara [32] present an approach to negotiation in MAS based on the 

sequential decision making paradigm where a sequence of decisions are dependent on each 

other, and the decision maker has a chance to update his knowledge after implementing the 

decision at each step in the sequence via feedback.  This allows for more informed decision 

making as the series of decisions progresses.  Their sequential decision making model, 

Bazaar, learns by explicitly modeling beliefs about the negotiation environment and the 

participating agents under a probabilistic framework using a Bayesian learning 

representation and updating mechanism [32].  

Bui et al. [4] and Sandolm and Lesser [26] have conducted research related to that of 

Zeng and Sycara [32].  Bui et al. [4] use probabilistic learning to allow agents in a MAS to 

learn other agents' preferences during negotiation.  A Bayesian classifier augments agent 

communications by capturing knowledge from past negotiation exchanges to allow agents 

to update beliefs about other agents and thus adjust behavior for the current exchange.  

Sandolm and Lesser [26] look at coalition building among agents by learning preferences of 

other agents in the system.  This is useful for negotiations in which there are more than two 

agents that are negotiating to solve a problem in the MAS. 

Prasad, Lesser, and Lander [25] look at a different type of learning in MAS — 

coordination.  Their work looks at how agents can change their behavior as they learn about 

the MAS of which they are a part.  As an agent's knowledge of the system configuration 

changes, it adjusts its behavior to help meet the common goals of the system and enhance 
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its overall performance.  Learning occurs in the form of each agent learning which part(s) of 

the common goal it can work to solve.  This work uses the TEAM framework presented by 

Lander and Lesser [15] to explore issues of learning. 

The examples detailed above provide an overview of past work on multiagent 

systems.  The Zeng and Sycara [32], Bui et al. [4], and Sandolm and Lesser [26] examples 

involve deliberate agents that can act, more or less, on their own to solve a problem.  In 

contrast, Prasad, Lesser, and Lander [25] look at reactive agents.  In a reactive system, each 

agent possesses partial knowledge required for successful problem solving so that the agents 

must work together to complete the task(s) at hand.  

 

3.3. Learning in MACS    
 

In this section, we describe how learning is undertaken in MACS.    Bayesian 

learning is applied in the ML agent so that it can learn which specialty agents should receive 

incoming messages.  The approach is similar to that of Heckerman and Horvitz [13] where 

user goals are inferred from user queries using a naive Bayesian classifier.  However, the 

Heckerman and Horvitz [13] approach allows for free-text queries whereas MACS is 

designed for both free-text, Natural language, queries and keyword searches. 

Essentially, the user agent employs a Bayesian model to identify which specialty 

agent(s), ai, are most likely to respond correctly to a query given the evidence, e, appearing 

in the query, q.  The Bayesian learning procedure is as follows: 
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1. User enters a query, qincoming 
2. Use Bayesian reasoning to determine which ai should receive the query. 

 For each ai (i = evaluation, synopsis, justification, forms, type of contracts): 
◆ CALCULATE the percentage of time each keyword appears in all qexisting (e.g.,  
  evaluation criteria appears in 80% of existing queries sent to the aevaluation) 
◆ CALCULATE probability(evidence/ai) by multiplying all percentages  
  calculated in the immediately preceding step that correspond to qincoming.     
  Probability(evidence/ai) represents the likelihood that a query actually  
  corresponds to the domain knowledge of that ai.  This is a causal relationship  
  from the cause (ai) to the effect (qincoming). 
◆ USE the Bayesian formula by (a) multiplying the prior probability, P(ai), by  
  probability(evidence/ai), (b) sum all calculations from (a), and (c) divide each  
  individual result from (a) by (b).  This will give the probability(ai/evidence).  
  P(ai) represents the likelihood qincoming should be sent to a particular ai given no  
  evidence. At time 0,  P(ai) = 0.2 for all i.  Probability(ai/evidence) is the  
  posterior probability distribution of ai given the evidence.  This probability  
  assesses the likelihood that a specialty agent will answer qincoming based on the  
  evidence provided by qincoming itself. 
◆ DIVIDE probability(ai/evidence) by P(ai) 

After completing the calculations for each ai  
◆ IDENTIFY the result with the greatest value 
◆ SEND qincoming to the corresponding ai  
◆ ADD qincoming to the list of qexisting for the corresponding ai 
    

 
The learning model is displayed in Figure 2.  This model is simple, it shows a causal 

relationship between the specialty agents and the evidence in the query.  ai is a random 

variable with a probability distribution over the five specialty agents.  Evidence is a random 

variable gathered from qincoming, with a probability distribution over the attributes associated 

with each specialty agent.  Evidence consists of keywords that are extracted from a user's 

natural language query and used to probabilistically determine which specialty agent(s) 

should receive qincoming.  
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Figure 2. Bayesian network for the user agent 
 
 

 

 An example of how Bayesian learning is implemented in MACS is provided in 

subsequent paragraphs. The prior probability for each specialty agent represents the 

likelihood that agent will respond to an incoming query.  The prior probabilities are adapted 

over a series of runs, and the values displayed below are from a point in time prior to the 

sample run used in this example.  In the example detailed below, the Contracts agent has the 

greatest probability, when compared to the other specialty agents, of responding to a new 

query.  This indicates that a majority of the incoming queries contain terms that are used by 

the Contracts agent.  It is important to note that all of the prior probabilities sum to one; the 

probability displayed as 1.0 for the Contracts agent is rounded up and is not actually 1.0.  

The prior probabilities are given in Table 1. 

 

probability(ai) 

evidence 

ai 

probability(evidence) 
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Table 1. Prior Probabilities for MACS Example 

Agent Prior Probabilities 

forms 2.5822858689540867 E-242 
contracts 1.0 
justification 1.0240324973261967 E-166 
evaluation 1.9181461523891187 E-214 
synopsis 3.6206243551615097 E-190 
 

 

The example run includes the following four keyword terms: 

1. Not on GSA Schedule 
2. Cost plus fixed fee 
3. Synopsis format  
4. Sole source (non-competitive) procurement 

 

The terms are sent to the Machine Learning agent and the Bayesian formula is applied.  At 

the time of this run, none of these terms submitted were input in previous queries in either 

the Forms or Evaluation agent.  The remaining specialty agents have used some of these 

terms in previous responses.  Table 2 presents calculations from the first step in the 

Bayesian learning procedure. 

 

Table 2. Step 1 in Bayesian Learning 

Agent Probability (evidence/ai) 

forms 1.0000000000000004E-20 
contracts 3.698224852071007E-14 
justification 1.0526315789473686E-16 
evaluation 1.0000000000000004E-20 
synopsis 1.5306122448979592E-12 
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The probability(evidence/ai) values for each specialty agent are then multiplied by their 

respective prior probabilities and summed as shown in equation [1].  This value is the 

denominator for the Bayesian formula in subsequent calculations. 

Bayesian denominator: 
(2.5822858689540867E-242 * 1.0000000000000004E-20) + 
(1.0 * 3.698224852071007E-14) + 
(1.0240324973261967E-166 * 1.0526315789473686E-16) + 
(1.9181461523891187E-214 * 1.0000000000000004E-20) + 
(3.6206243551615097E-190 * 1.5306122448979592E-12) = 

      3.698224852071007E-14  [1] 
 

The next step is to calculate the updated prior probability values, as well as the 

probability(ai/evidence).  These values are used to determine the order in which the agents 

will be contacted to answer the incoming query.  The calculations used for the Forms agent 

are included here in equations [2] and [3].  The same calculations are made for each agent. 

Posterior probability: 
1.0000000000000004E-20 * 2.5822858689540867E-242 / 3.698224852071007E-14 = 

6.98250098965185E-249       [2] 
 
Score: 

6.98250098965185E-249 / 2.5822858689540867E-242 = 2.704E-7   [3] 
 

The posterior probability and score calculations for each specialty agent calculated from 

equations [2] and [3] are given in Table 3. 

 

Table 3. Posterior Probability and Score Calculations for Bayesian Learning 

Specialty 
Agent 

Posterior Probability  Score 

Forms 6.98250098965185E-249 2.704E-7 
Contracts 1.0 1.0 
Justification 2.914719866073721E-169  0.0028463157894736833 
Evaluation 5.186667196060177E-221  2.704E-7 
Synopsis 1.4984951412790896E-188 41.3877551020408 
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As is indicated by the Score values, the Machine Learning agent has determined that the 

Synopsis agent is the most likely agent to have a response for the incoming query.  In fact, 

the Synopsis agent is the correct agent to respond in this example.  The posterior probability 

values are then used to update the prior probability values for each specialty agent for the 

next iteration of MACS. 

 
4. Analysis of learning in MACS 
 
4.1 Methodology 
 

In order to evaluate the performance of the ML agent, it is tested against historical 

data.  This is accomplished via the current implementation of the User agent that is coded to 

send incoming queries to all specialty agents in addition to the ML agent.  This allows all 

specialty agents to access historical data in their knowledge domains when responding to 

queries.  The results from the broadcast query are then compared to the results from the ML 

agent in order to determine how well the ML agent is performing.  The level of effort 

required of the ML agent in order to obtain a correct response from keyword searches in 

MACS, is the focus of this paper.  The methodology for data collection, and how the current 

system is implemented, can be summarized as follows: 

1. A user enters a query, qincoming 
2. The query is packaged up by the User agent and broadcast to all specialty agents 
3. Results from each agent are collected 
4. The User agent sends the original qincoming to the ML agent 
5. Data on where the ML agent suggested routing qincoming are collected  
6. Results from the specialty agents contacted via machine learning are collected 
7. Results from both the broadcast and machine learning paths are compared and 

analyzed 
 

Results are analyzed using descriptive statistics.  First is the accuracy of the ML 

agent.  Here, the specialty agent to which the ML agent sends a query is compared to which 
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specialty agent(s) replied to that same query when the query was broadcast to all.  This 

statistic targets accuracy of the system, but not learning.  Learning is handled by the second 

statistic captured. 

The second set of data collected is the number of specialty agents the ML agent sent 

a query before reaching the correct agent.  The term correct used here refers to the agent 

with the domain expertise to answer a user's question.  This statistic targets the ability of the 

system to learn.  Learning is evaluated over time using this statistic, where messages should 

be sent to fewer and fewer specialty agents before reaching the correct one over time.  That 

is, the Bayesian probabilities are updated after every new query so that over time the ML 

agent learns which specialty agents can answer which types of questions. 

 

 
4.2 Results 
 
4.2.1 Accuracy 
 

Accuracy of MACS is 74.31%.  That is, 74.31% of the time, an incoming query was 

sent to the correct specialty agent and fully resolved.  The accuracy rate of 74.31% 

represents only those cases where the query was fully resolved by a single specialty agent’s 

response.  In many cases, multiple specialty agents may have to respond to a query in order 

to resolve it fully, where each specialty agent provides a different area of domain expertise.  

22.94% of the time there was a second specialty agent that should also have received the 

query, 1.83% of the time there were two additional specialty agents that should also have 

also received the query, and 0.92% of the time there were three additional specialty agents 

that should have also received the query.   
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The current design of MACS only allows the ML agent to designate one specialty 

agent to receive an incoming query.  Thus, the system design will need to be changed before 

the accuracy rate can be improved above 74.31%.  However, it should also be noted that 

Bayesian learning identified a correct specialty agent in every case.  That is, there may have 

been multiple specialty agents necessary to fully resolve the query, but at least one of those 

was identified in every case.  Thus, queries were not sent to specialty agents with no 

expertise relevant for the incoming query. 

 

4.2.2 Learning 

 The data on how many attempts the ML agent made before reaching the correct 

agent to whom queries should be sent suggest the MACS system is in fact learning.  Figure 

3 illustrates learning over time.  As the trend line shows, over time, fewer tries were needed 

before the correct specialty agent was identified, indicating the ML agent sufficiently 

learned specialty agents to which incoming queries should be sent.  The y-axis identifies the 

number of tries the ML agent made before learning the correct agent.   
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Figure 3. Learning in MACS Over Time 
 
 
 
5. Conclusions and Future Directions 
 

The multiagent system, MACS, presented in this paper illustrates how Bayesian 

learning can be built into a MAS, and how a human-based process can transition into an 

agent-based process.  A real-world problem in the area of defense contracting is used to 

illustrate the usefulness of the system design and learning techniques built into the system.  

MACS has been extended beyond the system presented by the authors [16] in previous 

research in that it now possesses the ability to learn from and adapt to its environment.  

Furthermore, the system has been migrated to OAA and uses XML coding.  There is also a 

natural language agent that is in the process of being developed and expanded.    

The system has been tested against known, historical data in order to show 

definitively that it is learning.  The data presented in Section 4 support the authors' claims 
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that Bayesian learning is a meaningful approach, and that learning is in fact occurring in the 

system.  However, the authors believe the results would be far more dramatic in a larger 

system where there are many more specialty agents that may need to respond to queries.  In 

such systems, performance enhancements from Bayesian learning will be more pronounced 

because resources allocated to agent communication increase as system size increase.  

Clearly, as the number of agents increases, the value of targeted brokering versus 

communicating with all agents in the system increases. 

While the research presented in this paper contributes to the existing MAS literature 

by building learning into a Web based MAS, it also lays a foundation upon which future 

work can build.  The primary direction for future work is in the area of more comprehensive 

learning than what is currently achieved by the MACS system.  This will occur in two 

dimensions.  First, future research will look at a MAS in which the specialty agents 

cooperate with each other to more completely answer user queries.  This is in contrast with 

the existing system where specialty agents communicate with a user agent, but not with each 

other.  Second, reinforcement learning will be built into the system so that MACS can learn 

from user feedback. 
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